Motion and expansion of a viscous vortex ring. Part 1. A higher-order asymptotic formula for the velocity

Author:

FUKUMOTO YASUHIDE,MOFFATT H. K.

Abstract

A large-Reynolds-number asymptotic solution of the Navier–Stokes equations is sought for the motion of an axisymmetric vortex ring of small cross-section embedded in a viscous incompressible fluid. In order to take account of the influence of elliptical deformation of the core due to the self-induced strain, the method of matched of matched asymptotic expansions is extended to a higher order in a small parameter ε = (v/Γ)1/2, where v is the kinematic viscosity of fluid and Γ is the circulation. Alternatively, ε is regarded as a measure of the ratio of the core radius to the ring radius, and our scheme is applicable also to the steady inviscid dynamics.We establish a general formula for the translation speed of the ring valid up to third order in ε. This is a natural extension of Fraenkel–Saffman's first-order formula, and reduces, if specialized to a particular distribution of vorticity in an inviscid fluid, to Dyson's third-order formula. Moreover, it is demonstrated, for a ring starting from an infinitely thin circular loop of radius R0, that viscosity acts, at third order, to expand the circles of stagnation points of radii Rs(t) and s(t) relative to the laboratory frame and a comoving frame respectively, and that of peak vorticity of radius p(t) as RsR0 + [2 log(4R0/√vt) + 1.4743424] vt/R0, sR0 + 2.5902739 vt/R0, and RpR0 + 4.5902739 vt/R0. The growth of the radial centroid of vorticity, linear in time, is also deduced. The results are compatible with the experimental results of Sallet & Widmayer (1974) and Weigand & Gharib (1997).The procedure of pursuing the higher-order asymptotics provides a clear picture of the dynamics of a curved vortex tube; a vortex ring may be locally regarded as a line of dipoles along the core centreline, with their axes in the propagating direction, subjected to the self-induced flow field. The strength of the dipole depends not only on the curvature but also on the location of the core centre, and therefore should be specified at the initial instant. This specification removes an indeterminacy of the first-order theory. We derive a new asymptotic development of the Biot-Savart law for an arbitrary distribution of vorticity, which makes the non-local induction velocity from the dipoles calculable at third order.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 112 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3