Optimal energy density growth in Hagen–Poiseuille flow

Author:

Schmid Peter J.,Henningson Dan S.

Abstract

Linear stability of incompressible flow in a circular pipe is considered. Use is made of a vector function formulation involving the radial velocity and radial vorticity only. Asymptotic as well as transient stability are investigated using eigenvalues and ε-pseudoeigenvalues, respectively. Energy stability is probed by establishing a link to the numerical range of the linear stability operator. Substantial transient growth followed by exponential decay has been found and parameter studies revealed that the maximum amplification of initial energy density is experienced by disturbances with no streamwise dependence and azimuthal wavenumber n = 1. It has also been found that the maximum in energy scales with the Reynolds number squared, as for other shear flows. The flow field of the optimal disturbance, exploiting the transient growth mechanism maximally, has been determined and followed in time. Optimal disturbances are in general characterized by a strong shear layer in the centre of the pipe and their overall structure has been found not to change significantly as time evolves. The presented linear transient growth mechanism which has its origin in the non-normality of the linearized Navier–Stokes operator, may provide a viable process for triggering finite-amplitude effects.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference37 articles.

1. Bergström, L. 1993 Optimal growth of small disturbances in pipe Poiseuille flow.Phys. Fluids A5,2710–2720.

2. Pazy, A. 1983 Semigroups of Linear Operators and Applications to Partial Differential Equations .Springer.

3. Kato, T. 1976 Perturbation Theory for Linear Operators .Springer.

4. Lundbladh, A. 1993 Simulation of bypass transition to turbulence in wall bounded shear flows.PhD thesis,Department of Mechanics, KTH,Stockholm.

5. Trefethen, L. N. , Trefethen, A. E. , Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues.Science 261,578–584.

Cited by 208 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3