Laboratory and numerical studies of baroclinic waves in an internally heated rotating fluid annulus: a case of wave/vortex duality?

Author:

READ P. L.,LEWIS S. R.,HIDE R.

Abstract

The structure, transport properties and regimes of flow exhibited in a rotating fluid annulus, subject to internal heating and sidewall cooling, are studied both in the laboratory and in numerical simulations. The performance of the numerical model is verified quantitatively to within a few per cent in several cases by direct comparison with measurements in the laboratory of temperature and horizontal velocity fields in the axisymmetric and regular wave regimes. The basic azimuthal mean flow produced by this distribution of heat sources and sinks leads to strips of potential vorticity in which the radial gradient of potential vorticity changes sign in both the vertical and horizontal directions. From diagnosis of the energy budget of numerical simulations, the principal instability of the flow is shown to be predominantly baroclinic in nature, though with a non-negligible contribution towards the maintenance of the non-axisymmetric flow components from the barotropic wave–zonal flow interaction. The structure of the regime diagram for the internally heated baroclinic waves is shown to have some aspects in common with conventional wall-heated annulus waves, but the former shows no evidence for time-dependence in the form of ‘amplitude vacillation’. Internally heated flows instead evidently prefer to make transitions between wavenumbers in the regular regime via a form of vortex merging and/or splitting, indicating a mixed vortex/wave character to the non-axisymmetric flows in this system. The transition towards irregular flow occurs via a form of wavenumber vacillation, also involving vortex splitting and merging events. Baroclinic eddies are shown to develop from an initial axisymmetric flow via a mixed sinuous/varicose instability, leading to the formation of detached vortices of the same sign as the ambient axisymmetric potential vorticity at that level, in a manner which resembles recent simulations of atmospheric baroclinic frontal instability and varicose barotropic instabilities. Dye tracer experiments confirm the mixed wave/vortex character of the equilibrated instabilities, and exhibit chaotic advection in time-dependent flows.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3