Rheology of surface granular flows

Author:

ORPE ASHISH V.,KHAKHAR D. V.

Abstract

Surface granular flow, comprising granular material flowing on the surface of a heap of the same material, occurs in several industrial and natural systems. The rheology of such a flow was investigated by means of measurements of velocity and number-density profiles in a quasi-two-dimensional rotating cylinder, half-filled with a model granular material – monosize spherical stainless-steel particles. The measurements were made at the centre of the cylinder, where the flow is fully developed, using streakline photography and image analysis. The stress profile was computed from the number-density profile using a force balance which takes into account wall friction. Mean-velocity and root-mean-square (r.m.s.)-velocity profiles are reported for different particle sizes and cylinder rotation speeds. The profiles for the mean velocity superimpose when distance is scaled by the particle diameterdand velocity by a characteristic shear rate$\dot{\gamma}_C = [g\sin(\beta_m-\beta_s)/d\cos\beta_s]^{1/2}$and the particle diameter, where βmis the maximum dynamic angle of repose and βsis the static angle of repose. The maximum dynamic angle of repose is found to vary with the local flow rate. The scaling is also found to work for the r.m.s. velocity profiles. The mean velocity is found to decay exponentially with depth in the bed, with decay length λ = 1.1d. The r.m.s. velocity shows similar behaviour but with λ = 1.7d. The r.m.s. velocity profile shows two regimes: near the free surface the r.m.s. velocity is nearly constant and below a transition point it decays linearly with depth. The shear rate, obtained by numerical differentiation of the velocity profile, is not constant anywhere in the layer and has a maximum which occurs at the same depth as the transition in the r.m.s. velocity profile. Above the transition point the velocity distributions are Gaussian and below the transition point the velocity distributions gradually approach a Poisson distribution. The shear stress increases roughly linearly with depth. The variation in the apparent viscosity η with r.m.s. velocityushows a relatively sharp transition at the shear-rate maximum, and in the region below this point the apparent viscosity η ∼u−1.5. The measurements indicate that the flow comprises two layers: an upper low-viscosity layer with a nearly constant r.m.s. velocity and a lower layer of increasing viscosity with a decreasing r.m.s. velocity. The thickness of the upper layer depends on the local flow rate and is independent of particle diameter while the reverse is found to hold for the lower-layer thickness. The experimental data is compared with the predictions of three models for granular flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3