Numerical analysis of the flow through a corrugated tube with application to arterial prostheses

Author:

Savvides C. N.,Gerrard J. H.

Abstract

Steady and oscillating axisymmetric laminar flows are determined by a finite-difference solution of the vorticity and continuity equations for an incompressible fluid contained in a straight concertina-shaped tube far from its ends. In steady flow the size of the wall corrugations is varied as well as the Reynolds number of the flow. In unsteady flow one tube geometry is studied, and the parameters varied are the Reynolds number, the ratio of the mean volume flow rate to its amplitude, and the frequency of oscillation. The analysis produces streamlines, particle paths and the pressure difference across a length of the tube. The resistance to the flow is determined in terms of an equivalent cylindrical tube diameter.In steady flow the onset of flow separation and the growth of the separated region of flow is determined. The equivalent diameter is found to be principally a function of the product of Reynolds number and the non-dimensional pressure difference. This product depends on the height of the wall corrugations and less strongly on Reynolds number and the length of the corrugations. Resistance increases with increasing height of the corrugations. Comparison is made with other computational and experimental values of the pressure difference.In unsteady flow the mean velocity to amplitude ratio has little effect except on the particle paths. The flow pattern is found to be governed by the Stokes number (radius × (2π/(kinematic viscosity × period))½) and the Reynolds number. There is a region of quasi-steady flow at the time of zero acceleration at maximum flow, but unsteady flow in between. The mixing produced by radial convection is restricted to the outer parts of the tube where the wall is corrugated. In oscillating flow the resistance relative to a cylindrical tube decreases as frequency and Reynolds number increase.In the medical application of the work the concern is whether sustained stagnant regions occur in the corrugations and whether there is a large change in resistance relative to a cylindrical tube. This part of the investigation was made with an arterial waveform which contained six harmonics. It is found that there are no regions of stagnant fluid in the range of parameters considered. The difference between the variation with the flow parameters of the resistance of the corrugated tube and of a cylindrical tube was found not to be large.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference21 articles.

1. Azzam, M. I. S. & Dullien, F. A. L. 1977 Flow in tubes with periodic step changes in diameter: a numerical solution.Chem. Engng Sci. 32,1445.

2. Macagno, E. O. & Hung, T. K. 1967 Computational and experimental study of a captive annular eddy J. Fluid Mech. 28,43.

3. Roache, P. J. 1972 Computational Fluid Dynamics .Hermosa.

4. Gerrard, J. H. 1971 The stability of unsteady axisymmetric incompressible pipe flow close to a piston J. Fluid Mech. 50,625.

5. Smith, F. T. 1976 Flow through constricted or dilated pipes and channels: Parts I and II.Q. J. Mech. Appl. Maths 29,343 and365.

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3