Acoustic and disturbance energy analysis of a flow with heat communication

Author:

KARIMI NADER,BREAR MICHAEL J.,MOASE WILLIAM H.

Abstract

This paper presents a comparative analysis of the budgets of acoustic energy and Myers' second-order ‘disturbance energy’ in a simple inhomogeneous flow with heat communication. The flow considered is non-diffusive and one-dimensional, with excitation by downstream-travelling acoustic and entropic disturbances. Two forms of heat communication are examined: a case with only steady heat communication and another in which unsteady heat addition cancels the generation of entropy disturbances throughout the inhomogeneous region.It is shown that significant entropic disturbances are usually generated at low frequency when a flow with steady heat communication is excited either acoustically or entropically. However, for acoustic excitation and regardless of the form of heat communication, entropic disturbances are not created at high frequency, inferring that all source terms create mainly sound in this limit. A general method is therefore proposed for determining an approximate frequency beyond which the generation of entropy disturbances can be ignored, and the disturbance energy flux then approximates the acoustic energy flux. This frequency is shown to depend strongly on the problem under investigation, which is expected to have practical significance when studying sound generation and propagation in combusting flows in particular. Further, sound is shown to be generated by fluid motion experiencing only steady heat communication, which is consistent with the known mechanism of sound generation by the acceleration of density disturbances.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3