Bubble transitions in strongly collapsed elastic tubes

Author:

HEAP ALEXANDRA,JUEL ANNE

Abstract

The selection of long air bubbles propagating steadily in a strongly collapsed fluid-filled elastic tube is investigated experimentally in a benchtop model of airway reopening. Localized regions of strong collapse are likely in the lung, because collapsing fluid-elastic instabilities promote extensive deformation of the airway cross-section beyond the point of opposite wall contact. We find that radical changes in the reopening mechanics occur at this point. We build on the recent identification by Heap & Juel (Phys. Fluids, vol. 20, 2008, article no. 081702) of three different steadily propagating bubbles (asymmetric, double-tipped and pointed) that are selected successively for increasing values of the capillary number (Ca, ratio of viscous to surface tension forces) in tubes initially collapsed beyond the point of opposite wall contact. The asymmetric bubble is also observed in less collapsed tubes for small values of Ca, and we show that it bifurcates super-critically from the usual parabolic-tipped bubble as Ca increases. We also characterize the mechanisms underlying the discontinuous transitions between asymmetric and double-tipped bubbles, and double-tipped and pointed bubbles. In particular, we find that the tube must reopen to a critical height for double-tipped bubbles to be selected. The length of the precursor fingers in the double-tipped bubble decreases with Ca, and the bubble loses stability to pointed bubbles when this length is less than the height of the tube at the point where the fingers merge. By contrast with the asymmetric and double-tipped bubbles, the pointed bubble infiltrates the most collapsed part of the tube to yield the rapid reopening of the airway at low pressure, with the potential to reduce ventilation-induced lung damage.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3