Droplet coalescence: drainage, film rupture and neck growth in ultralow interfacial tension systems

Author:

AARTS DIRK G. A. L.,LEKKERKERKER HENK N. W.

Abstract

We study the coalescence of a drop with its bulk phase in fluid–fluid demixing colloid–polymer mixtures. Such mixtures show behaviour analogous to molecular fluid–fluid systems, but the interfacial tension is between 105 to 107 times smaller than in the molecular case. Such an ultralow interfacial tension has several important consequences and offers significant advantages in the study of droplet coalescence. The coalescence process can be divided into three consecutive stages: (i) drainage of the continuous film between droplet and bulk phase, (ii) rupture of the film, and (iii) growth of the connection. These stages can be studied within a single experiment by optical microscopy thanks to the ultralow interfacial tension in colloid–polymer mixtures, which significantly changes the relevant characteristic length and time scales. The first stage is compared with existing theories on drainage, where we show several limiting theoretical cases. The experimental drainage curves of different colloid–polymer mixtures can be scaled and then show very similar behaviour. We observe that drainage becomes very slow and eventually the breakup of the film is induced by thermal capillary waves. The time it takes for a certain height fluctuation of the interface to occur, which turns out to be an important parameter for the kinetics of the process, can be directly obtained from experiment. During the third stage we observe that the radius of the connecting neck grows linearly with time both for gas bubbles and liquid droplets with an order of magnitude that is in good agreement with the capillary velocity. Finally, partially bleaching the fluorescent dye inside the liquid droplet reveals how the surface energy is transformed into kinetic energy upon coalescence. This opens the way for a more complete understanding of the hydrodynamics involved.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3