Two-layer thermal convection in miscible viscous fluids

Author:

DAVAILLE ANNE

Abstract

The influence of a viscosity stratification on the interaction between thermal convection and a stable density discontinuity is studied, using laboratory experiments. Initially, two superposed isothermal layers of high-Prandtl-number miscible fluids are suddenly cooled from above and heated from below. By adjusting the concentrations of salt and cellulose, Rayleigh numbers between 300 and 3×107 were achieved for density contrasts between 0.45 % and 5 % and viscosity ratios between 1 and 6.4×104. Heat and mass transfer through the interface were monitored.Two-layer convection is observed but a steady state is never obtained since penetrative convection occurs. A new interfacial instability is reported, owing to the nonlinear interaction of the unstable thermal and stable chemical density gradients. As a result, the temperature condition at the interface is highly inhomogeneous, driving, on top of the classical small-scale thermal convection, a large-scale flow in each layer which produces cusps at the interface. Entrainment, driven by viscous coupling between the two layers, proceeds through those cusps. The pattern of entrainment is asymmetric: two-dimensional sheets are dragged into the more viscous layer, while three-dimensional conduits are produced in the less viscous layer. A simple entrainment model is proposed and scaling laws for the entrainment rate are derived; they explain the experimental data well.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 99 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3