Coherent structure of the convective boundary layer derived from large-eddy simulations

Author:

Schmidt Helmut,Schumann Ulrich

Abstract

Turbulence in the convective boundary layer (CBL) uniformly heated from below and topped by a layer of uniformly stratified fluid is investigated for zero mean horizontal flow using large-eddy simulations (LES). The Rayleigh number is effectively infinite, the Froude number of the stable layer is 0.09 and the surface roughness height relative to the height of the convective layer is varied between 10−6 and 10−2. The LES uses a finite-difference method to integrate the three-dimensional grid-volume-averaged Navier–Stokes equations for a Boussinesq fluid. Subgrid-scale (SGS) fluxes are determined from algebraically approximated second-order closure (SOC) transport equations for which all essential coefficients are determined from the inertial-range theory. The surface boundary condition uses the Monin–Obukhov relationships. A radiation boundary condition at the top of the computational domain prevents spurious reflections of gravity waves. The simulation uses 160 × 160 × 48 grid cells. In the asymptotic state, the results in terms of vertical mean profiles of turbulence statistics generally agree very well with results available from laboratory and atmospheric field experiments. We found less agreement with respect to horizontal velocity fluctuations, pressure fluctuations and dissipation rates, which previous investigations tend to overestimate. Horizontal spectra exhibit an inertial subrange. The entrainment heat flux at the top of the CBL is carried by cold updraughts and warm downdraughts in the form of wisps at scales comparable with the height of the boundary layer. Plots of instantaneous flow fields show a spoke pattern in the lower quarter of the CBL which feeds large-scale updraughts penetrating into the stable layer aloft. The spoke pattern has also been found in a few previous investigations. Small-scale plumes near the surface and remote from strong updraughts do not merge together but decay while rising through large-scale downdraughts. The structure of updraughts and downdraughts is identified by three-dimensional correlation functions and conditionally averaged fields. The mean circulation extends vertically over the whole boundary layer. We find that updraughts are composed of quasi-steady large-scale plumes together with transient rising thermals which grow in size by lateral entrainment. The skewness of the vertical velocity fluctuations is generally positive but becomes negative in the lowest mesh cells when the dissipation rate exceeds the production rate due to buoyancy near the surface, as is the case for very rough surfaces. The LES results are used to determine the root-mean-square value of the surface friction velocity and the mean temperature difference between the surface and the mixed layer as a function of the roughness height. The results corroborate a simple model of the heat transfer in the surface layer.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference86 articles.

1. Schumann, U. , Hauf, T. , Höller, H. , Schmidt, H. & Volkert, H. ,1987 A mesoscale model for the simulation of turbulence, clouds and flow over mountains: Formulation and validation examples.Beitr. Phys. Atmos. 60,413–446.

2. Schumann, U. :1975 Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli.J. Comp. Phys. 18,376–404.

3. Wilczak, J. M. & Businger, J. A. ,1983 Thermally indirect motions in the convective atmospheric boundary layer.J. Atmos. Sci. 40,343–358.

4. Rowland, J. R. & Arnold, A. ,1975 Vertical velocity structure and geometry of clear air convective elements. In Proc. 16th Radar Meteorology Conf., Houston, Texas, April 22–24, 1975 , pp.296–303.Amer. Met. Soc.,Boston, Mass.

5. Willis, G. E. & Deardorff, J. W. ,1974 A laboratory model of the unstable planetary boundary layer.J. Atmos. Sci. 31,1297–1307.

Cited by 551 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3