Determination of surface shear viscosity via deep-channel flow with inertia

Author:

HIRSA A. H.,LOPEZ J. M.,MIRAGHAIE R.

Abstract

Results of an experimental and computational study of the flow in an annular region bounded by stationary inner and outer cylinders and driven by the rotation of the floor are presented. The top is a flat air/water interface, covered by an insoluble monolayer. We develop a technique to determine the surface shear viscosity from azimuthal velocity measurements at the interface which extends the range of surface shear viscosity that can be measured using a deep-channel viscometer in the usual Stokes flow regime by exploiting flow inertia. A Navier–Stokes-based model of bulk flow coupled to a Newtonian interface that has surface shear viscosity as the only interfacial property is developed. This is achieved by restricting the flow to regimes where the surface radial velocity vanishes. The use of inertia results in an improved signal-to-noise ratio of the azimuthal velocity measurements by an order of magnitude beyond that available in the Stokes flow limit. Measurements on vitamin K1 and stearic acid monolayers were performed, and their surface shear viscosities over a range of concentrations are determined and found to be in agreement with data in the literature.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3