Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number

Author:

DUAN L.,BEEKMAN I.,MARTÍN M. P.

Abstract

In this paper, we perform direct numerical simulations (DNS) of turbulent boundary layers with nominal free-stream Mach number ranging from 0.3 to 12. The main objective is to assess the scalings with respect to the mean and turbulence behaviours as well as the possible breakdown of the weak compressibility hypothesis for turbulent boundary layers at high Mach numbers (M > 5). We find that many of the scaling relations, such as the van Driest transformation for mean velocity, Walz's relation, Morkovin's scaling and the strong Reynolds analogy, which are derived based on the weak compressibility hypothesis, remain valid for the range of free-stream Mach numbers considered. The explicit dilatation terms such as pressure dilatation and dilatational dissipation remain small for the present Mach number range, and the pressure–strain correlation and the anisotropy of the Reynolds stress tensor are insensitive to the free-stream Mach number. The possible effects of intrinsic compressibility are reflected by the increase in the fluctuations of thermodynamic quantities (prms/pw, ρ′rms/ρ, Trms/T) and turbulence Mach numbers (Mt, Mrms), the existence of shocklets, the modification of turbulence structures (near-wall streaks and large-scale motions) and the variation in the onset of intermittency.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference42 articles.

1. The structure of turbulent boundary layers

2. Debiève J. 1983 Etude d'une interaction turbulence/onde de choc. Phd thesis, Université d'Aix–Marseille II. In Proc. ICHMT/IUTAM Symp. on the Structure of Turbulence and Heat and Mass Transfer, Dubrovnik.

3. Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments

4. Chasing eddies and their wall signature in DNS data of turbulent boundary layers

5. Compressible mixing layer growth rate and turbulence characteristics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3