Electromagnetic control of thermal convection of a fluid with strongly temperature-dependent material properties

Author:

GIESSLER CORNELIA,THESS ANDRÉ

Abstract

We study a one-dimensional model describing buoyancy-driven laminar steady flow of a glass melt in a closed loop under the influence of a localized electromagnetic (Lorentz) force. The loop is a highly simplified representation of a closed streamline in glass melt flow in a real furnace under the influence of an artificially produced Lorentz force. The model is based on the energy equation for the temperature and the Stokes equation for the velocity distribution inside the loop. We take into account the full nonlinear temperature dependence of the viscosity and the electrical conductivity of the melt. The three-dimensional problem is then reduced to a single nonlinear equation for the cross-section averaged velocity from which the one-dimensional temperature distribution along the loop can be readily obtained. We show that the two-way interaction between the velocity and temperature resulting from the temperature-dependent material properties and Lorentz force leads to the result that the mean velocity as a function of the control parameters is non-unique and involves bifurcations. For some parameters we even observe freezing, which refers to a regime in which the fluid is almost at rest. Our model reveals the role of temperature-dependent viscosity and conductivity in glass melt flows in a pure form that is not visible in full numerical simulations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3