Directional locking and deterministic separation in periodic arrays

Author:

FRECHETTE JOELLE,DRAZER GERMAN

Abstract

We investigate the dynamics of a non-Brownian sphere suspended in a quiescent fluid and moving through a periodic array of solid obstacles under the action of a constant external force by means of Stokesian dynamics simulations. We show that in the presence of non-hydrodynamic, short-range interactions between the solid obstacles and the suspended sphere, the moving particle becomes locked into periodic trajectories with an average orientation that coincides with one of the lattice directions and is, in general, different from the direction of the driving force. The locking angle depends on the details of the non-hydrodynamic interactions and could lead to vector separation of different species for certain orientations of the external force. We explicitly show the presence of separation for a mixture of suspended particles with different roughness, moving through a square lattice of spherical obstacles. We also present a dilute model based on the two-particle mobility and resistance functions for the collision between spheres of different sizes. This simple model predicts the separation of particles of different size and also suggests that microdevices that maximize the differences in interaction area between the different particles and the solid obstacles would be more sensitive for size separation based on non-hydrodynamic interactions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3