Self-similar solutions of unsteady ablation flows in inertial confinement fusion

Author:

BOUDESOCQUE-DUBOIS C.,GAUTHIER S.,CLARISSE J.-M.

Abstract

We exhibit and detail the properties of self-similar solutions for inviscid compressible ablative flows in slab symmetry with nonlinear heat conduction which are relevant to inertial confinement fusion (ICF). These solutions have been found after several contributions over the last four decades. We first derive the set of ODEs – a nonlinear eigenvalue problem – which governs the self-similar solutions by using the invariance of the Euler equations with nonlinear heat conduction under the two-parameter Lie group symmetry. A sub-family which leaves the density invariant is detailed since these solutions may be used to model the ‘early-time’ period of an ICF implosion where a shock wave travels from the front to the rear surface of a target. A chart allowing us to determine the starting point of a numerical solution, knowing the physical boundary conditions, has been built. A physical analysis of these unsteady ablation flows is then provided, the associated dimensionless numbers (Mach, Froude and Péclet numbers) being calculated. Finally, we show that self-similar ablation fronts generated within the framework of the above hypotheses (electron heat conduction, growing heat flux at the boundary, etc.) and for large heat fluxes and not too large pressures at the boundary do not satisfy the low-Mach-number criteria. Indeed both the compressibility and the stratification of the hot-flow region are too large. This is, in particular, the case for self-similar solutions obtained for energies in the range of the future Laser MegaJoule laser facility. Two particular solutions of this latter sub-family have been recently used for studying stability properties of ablation fronts.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3