Theoretical study of turbulent channel flow: bulk properties, pressure fluctuations, and propagation of electromagnetic waves

Author:

Canuto V. M.,Hartke G. J.,Battaglia A.,Chasnov J.,Albrecht G. F.

Abstract

In this paper, we apply two theoretical turbulence models, DIA and the recent GISS model, to study properties of a turbulent channel flow. Both models provide a turbulent kinetic energy spectral function E(k) as the solution of a nonlinear equation; the two models employ the same source function but different closures. The source function is characterized by a rate ns(k) which is derived from the complex eigenvalues of the Orr–Sommerfeld equation in which the basic flow is taken to be of a Poiseuille type. The Orr–Sommerfeld equation is solved for a variety of Reynolds numbers corresponding to available experimental data. A physical argument is presented whereby the central line velocity characterizing the basic flow, U0L, is not to be identified with the U0 appearing in the experimental Reynolds number. A renormalization is suggested which has the effect of yielding growth rates of magnitude comparable with those calculated by Orszag & Patera based on their study of a secondary instability. From the practical point of view, this renormalization frees us from having to solve the rather time-consuming equations describing the secondary instability. This point is discussed further in §13. In the present treatment, the shear plays only the role of a source of energy to feed the turbulence and not the possible additional role of an interaction between the shear of the mean flow and the eddy vorticity that would give rise to resonance effects when the shear is equal to or larger than the eddy vorticities. The inclusion of this possible resonance phenomenon, which is not expected to affect the large-eddy behaviour and thus the bulk properties, is left for a future study. The theoretical results are compared with two types of experimental data: (a) turbulence bulk properties, table 4, and (b) properties that depend strongly on the structure of the turbulence spectrum at low wavenumbers (i.e. large eddies), tables 5 and 6. The latter data are taken from recent experiments measuring the changes in the propagation of an electromagnetic wave through a turbulent channel flow. The fluctuations in the refractive index of the turbulent medium are thought to be due to pressure fluctuations whose spectral function Π(k) is contributed mostly by the interaction between the mean flow and the turbulent velocity. The spectrum Π(k) must be computed as a function of the wavenumber k, the position in the channel x2, and the width of the channel Δ. The only existing analytical expression for Π(k), due to Kraichnan, cannot be used in the present case because it applies to the case x2 = 0 and Δ = ∞, which corresponds to the case of a flat plate, not a finite channel. A general expression for Π(k, x2; Δ) is derived here for the first time and employed to calculate the fraction of incoherent radiation scattered out of a coherent beam. In §11, we treat anisotropy and show how to extend the previous results to include an arbitrary degree of anisotropy α in the sizes of the eddies. We show that the theoretical one-dimensional spectra yield a better fit to the data for a degree of anisotropy (α ≈ 4) that is within the range of experimental values. We also extend the expression for Π(k, x2; Δ) to Π(k, x2; Δ, α) and compute the pressure fluctuations for different values of α. Similarly, we evaluate the fraction of electromagnetic energy scattered by an anisotropic turbulent flow and find a good fit to the laboratory data for a value of α ≈ 4–6. Scaling formulae for the scattered fraction are presented in §12. These formulae reproduce the calculated results, both with and without the addition of anisotropy, to better than 5%.Theoretical problems however remain which will require further study: among them, lack of backscatter (i.e. the transfer of energy from large to small wavenumbers) in the GISS model, possible resonance effects between the shear and eddy vorticity, behaviour of the one-dimensional spectral function at low wavenumbers, and the role of the secondary instability. These topics are now under investigation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference36 articles.

1. Batchelor, G. K. 1951 Proc. Camb. Phil. Soc. 47,359.

2. Canuto, V. M. , Goldman, I. & Chasnov, J. 1987 Phys. Fluids 30,3391.

3. Kraichnan, R. H. 1964b Phys. Fluids 7,1048.

4. Lesieur, M. 1987 Turbulence in Fluids. M. Nijhoff.

5. Hinze, J. O. 1975 Turbulence .McGraw-Hill.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3