The mechanics of the Tollmien-Schlichting wave

Author:

Baines Peter G.,Majumdar Sharan J.,Mitsudera Humio

Abstract

We describe a mechanistic picture of the essential dynamical processes in the growing Tollmien-Schlichting wave in a Blasius boundary layer and similar flows. This picture depends on the interaction between two component parts of a disturbance (denoted ‘partial modes’), each of which is a complete linear solution in some idealization of the system. The first component is an inviscid mode propagating on the vorticity gradient of the velocity profile with the free-slip boundary condition, and the second, damped free viscous modes in infinite uniform shear with the no-slip condition. There are two families of these viscous modes, delineated by whether the phase lines of the vorticity at the wall are oriented with or against the shear, and they are manifested as resonances in a forced system. The interaction occurs because an initial ‘inviscid’ disturbance forces a viscous response via the no-slip condition at the wall. This viscous response is large near the resonance associated with the most weakly damped viscous mode, and in the unstable parameter range it has suitable phase at the outer part of the boundary layer to increase the amplitude of the inviscid partial mode by advection.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference22 articles.

1. Phillips, O. M. 1966 The Dynamics of the Upper Ocean. Cambridge University Press.

2. Craik, A. D. D. 1985 Wave Interactions and Fluid Flows. Cambridge University Press.

3. Smith, F. T. 1979 On the non-parallel flow instability of the Blasius boundary-layer.Proc. R. Soc. Lond A366,91–109.

4. Corcos, G. & Sellars, J. R. 1959 On the stability of fully developed flow in a pipe.J. Fluid Mech. 5,97–112.

5. Baines, P. G. 1995 Topographic Effects in Stratified Flows. Cambridge University Press.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3