Universality of shear-banding instability and crystallization in sheared granular fluid

Author:

ALAM MEHEBOOB,SHUKLA PRIYANKA,LUDING STEFAN

Abstract

The linear stability analysis of an uniform shear flow of granular materials is revisited using several cases of a Navier–Stokes-level constitutive model in which we incorporate the global equation of states for pressure and thermal conductivity (which are accurate up to the maximum packing density νm) and the shear viscosity is allowed to diverge at a density νμ (<νm), with all other transport coefficients diverging at νm. It is shown that the emergence of shear-banding instabilities (for perturbations having no variation along the streamwise direction), that lead to shear-band formation along the gradient direction, depends crucially on the choice of the constitutive model. In the framework of a dense constitutive model that incorporates only collisional transport mechanism, it is shown that an accurate global equation of state for pressure or a viscosity divergence at a lower density or a stronger viscosity divergence (with other transport coefficients being given by respective Enskog values that diverge at νm) can induce shear-banding instabilities, even though the original dense Enskog model is stable to such shear-banding instabilities. For any constitutive model, the onset of this shear-banding instability is tied to a universal criterion in terms of constitutive relations for viscosity and pressure, and the sheared granular flow evolves toward a state of lower ‘dynamic’ friction, leading to the shear-induced band formation, as it cannot sustain increasing dynamic friction with increasing density to stay in the homogeneous state. A similar criterion of a lower viscosity or a lower viscous-dissipation is responsible for the shear-banding state in many complex fluids.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference54 articles.

1. Linear instability of planar shear banded flow of both diffusive and non-diffusive Johnson–Segalman fluids

2. Partially fluidized shear granular flows: continuum theory and molecular dynamics simulations;Volfson;Phys. Rev.,2003

3. Nearest-neighbour statistics for packings of hard spheres and disks;Torquato;Phys. Rev.,1995

4. Intercluster interactions in rapid granular shear flows

5. Stresses developed by dry cohesionless granular materials sheared in an annular shear cell

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3