Abstract
The problem of determining the profile of a plane diffuser (of given upstream width and length) that provides the maximum static pressure rise is solved. Two-dimensional, incompressible, laminar flow governed by the steady-state Navier-Stokes equations is assumed through the diffuser. Recent advances in computational resources and algorithms have made it possible to solve the ‘direct’ problem of determining such a flow through a body of known geometry. In this paper, a set of ‘adjoint’ equations is obtained, the solution to which permits the calculation of the direction and relative magnitude of change in the diffuser profile that leads to a higher pressure rise. The direct as well as the adjoint set of partial differential equations are obtained for Dirichlet-type inflow and outflow conditions. Repeatedly modifying the diffuser geometry with each solution to these two sets of equations with the above boundary conditions would in principle lead to a diffuser with the maximum static pressure rise, also called the optimum diffuser. The optimality condition, that the shear stress all along the wall must vanish for the optimum diffuser, is also recovered from the analysis. It is postulated that the adjoint set of equations continues to hold even if the computationally inconvenient Dirichlet-type outflow boundary condition is replaced by Neumann-type conditions. It is shown that numerical solutions obtained in this fashion do satisfy the optimality condition.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference32 articles.
1. McFadden, G. B. 1979 An artificial viscosity method for the design of supercritical airfoils.New York University Rep. C00-3077-158.
2. Glowinski, R. & Pironneau, O. 1975 On the numerical computation of the minimum drag profile in laminar flow.J. Fluid Mech. 72,385–389.
3. Garabedian, P. R. & Korn, D. G. 1971 Numerical design of transonic airfoils. In Proc. SYNSPADE, 1970 (ed. B. Hubbard ),pp.253–271.Academic.
4. Garabedian, P. & McFadden, G. B. 1982 Computational fluid dynamics of airfoils and wings. In Proc. Symp. on Transonic, Shock, and Multidimensional Flows, Madison, 1981 (ed. R. Meyer ),pp.1–16.Academic.
5. Lions, J. L. & Magenes, E. 1967 ProbleAmes aux Limites Non-homogeGnes , vol. 1.Paris:Dunod.
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献