Self-similarity, momentum scaling and Reynolds stress in non-premixed turbulent spray flames

Author:

KARPETIS A. N.,GOMEZ A.

Abstract

An experimental study was conducted in a turbulent spray flame in which droplets were produced ultrasonically at low velocity relative to the host gas. In this fashion, injector-specific effects on the two-phase flow were minimized and a scenario generally characteristic of the far field of practical spray systems could be simulated. Close to the burner exit, the spray flame appeared as a dense column of drops burning with an envelope flame. Further downstream, it opened up slowly in the radial direction and developed a turbulent ‘brush’ appearance. Measurements of the size, velocity and concentration of the droplets, and of gas-phase velocity and temperature were made by combining a Phase-Doppler interferometric technique with Stokes/anti-Stokes Raman thermometry. The experimental data were used to derive scaling and self-similarity for the Reynolds-averaged continuity and momentum equations using suitable transformations.Results showed three distinct regions, on the basis of the behaviour of the gas axial velocity in the spray flame. In the lower part of the flame, the gas momentum increased because of vaporization. In the intermediate region of the spray flame, the axial velocity decayed along the centreline as an inverse power of the distance from the virtual origin, with exponents smaller than unity. In the upper part of the spray flame, the flow field recovered the axial velocity decay that is typical of incompressible jets, namely as an inverse of the axial distance. Self-similar behaviour held for the axial velocity throughout the intermediate region. The vapour source term in the gas continuity equation scaled approximately as an inverse power of axial distance, and exhibited self-similarity throughout the spray flame. As a result, a simple model of the Reynolds stress term could be formulated, in which two competing contributions appear: one, that is due to turbulent transport, tends to increase the value of the velocity correlation; another, that is due to the vaporization term, tends to reduce the value of the velocity correlation and can be construed as a vaporization-induced tendency towards relaminarization. The first term is modelled by a classic gradient-transport approach yielding an empirical mixing length relating the velocity correlation to the average velocity gradient. Model and experiments are found to be in good agreement, especially sufficiently far from the injector, where one-way coupling between the two phases holds.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3