Abstract
A new turbulence modelling approach is presented. Geometrically reformulating the averaged Navier–Stokes equations on a four-dimensional non-Riemannian manifold without changing the physical content of the theory, additional modelling restrictions which are absent in the usual Euclidean (3+1)-dimensional framework naturally emerge. The modelled equations show full form invariance for all Newtonian reference frames in that all involved quantities transform as true 4-tensors. Frame accelerations or inertial forces of any kind are universally described by the underlying four-dimensional geometry.By constructing a nonlinear eddy viscosity model within the k−ϵ family for high turbulent Reynolds numbers the new invariant modelling approach demonstrates the essential advantages over current (3+1)-dimensional modelling techniques. In particular, new invariants are gained, which allow for a universal and consistent treatment of non-stationary effects within a turbulent flow. Furthermore, by consistently introducing via a Lie-group symmetry analysis a new internal modelling variable, the mean form-invariant pressure Hessian, it will be shown that already a quadratic nonlinearity is sufficient to capture secondary flow effects, for which in current nonlinear eddy viscosity models a higher nonlinearity is needed. In all, this paper develops a new unified formalism which will naturally guide the way in physical modelling whenever reasonings are based on the general concept of invariance.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics