Laminar–turbulent transition in pipe flow for Newtonian and non-Newtonian fluids

Author:

DRAAD A. A.,KUIKEN G. D. C.,NIEUWSTADT F. T. M.

Abstract

A cylindrical pipe facility with a length of 32 m and a diameter of 40 mm has been designed. The natural transition Reynolds number, i.e. the Reynolds number at which transition occurs as a result of non-forced, natural disturbances, is approximately 60 000. In this facility we have studied the stability of cylindrical pipe flow to imposed disturbances. The disturbance consists of periodic suction and injection of fluid from a slit over the whole circumference in the pipe wall. The injection and suction are equal in magnitude and each distributed over half the circumference so that the disturbance is divergence free. The amplitude and frequency can be varied over a wide range.First, we consider a Newtonian fluid, water in our case. From the observations we compute the critical disturbance velocity, which is the smallest disturbance at a given Reynolds number for which transition occurs. For large wavenumbers, i.e. large frequencies, the dimensionless critical disturbance velocity scales according to Re−1, while for small wavenumbers, i.e. small frequencies, it scales as Re−2/3. The latter is in agreement with weak nonlinear stability theory. For Reynolds numbers above 30 000 multiple transition points are found which means that increasing the disturbance velocity at constant dimensionless wavenumber leads to the following course of events. First, the flow changes from laminar to turbulent at the critical disturbance velocity; subsequently at a higher value of the disturbance it returns back to laminar and at still larger disturbance velocities the flow again becomes turbulent.Secondly, we have carried out stability measurements for (non-Newtonian) dilute polymer solutions. The results show that the polymers reduce in general the natural transition Reynolds number. The cause of this reduction remains unclear, but a possible explanation may be related to a destabilizing effect of the elasticity on the developing boundary layers in the entry region of the flow. At the same time the polymers have a stabilizing effect with respect to the forced disturbances, namely the critical disturbance velocity for the polymer solutions is larger than for water. The stabilization is stronger for fresh polymer solutions and it is also larger when the polymers adopt a more extended conformation. A delay in transition has been only found for extended fresh polymers where delay means an increase of the critical Reynolds number, i.e. the number below which the flow remains laminar at any imposed disturbance.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 150 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3