The slumping of gravity currents

Author:

Huppert Herbert E.,Simpson John E.

Abstract

Experimental results for the release of a fixed volume of one homogeneous fluid into another of slightly different density are presented. From these results and those obtained by previous experiments, it is argued that the resulting gravity current can pass through three states. There is first a slumping phase, during which the current is retarded by the counterflow in the fluid into which it is issuing. The current remains in this slumping phase until the depth ratio of current to intruded fluid is reduced to less than about 0.075. This may be followed by a (previously investigated) purely inertial phase, wherein the buoyancy force of the intruding fluid is balanced by the inertial force. Motion in the surrounding fluid plays a negligible role in this phase. There then follows a viscous phase, wherein the buoyancy force is balanced by viscous forces. It is argued and confirmed by experiment that the inertial phase is absent if viscous effects become important before the slumping phase has been completed. Relationships between spreading distance and time for each phase are obtained for all three phases for both two-dimensional and axisymmetric geometries. Some consequences of the retardation of the gravity current during the slumping phase are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference9 articles.

1. Simpson, J. E. & Britter, R. E. 1979 The dynamics of the head of a gravity current advancing over a horizontal surface.J. Fluid Mech. 94,477–495.

2. Hoult, D. P. 1972 Oil spreading on the sea.Ann. Rev. Fluid Mech. 4,341–368.

3. Keulegan, G. H. 1957 An experimental study of the motion of saline water from locks into fresh water channels.Nat. Bur. Stand. Rep. 5168.

4. Fannelop, T. K. & Waldman, G. D. 1971 The dynamics of oil slicks - or ‘creeping crude’.A.I.A.A. J. 41,1–10.

5. Benjamin, T. B. 1968 Gravity currents and related phenomena.J. Fluid Mech. 31,209–248.

Cited by 499 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3