The dispersion and attenuation of helicon waves in a uniform cylindrical plasma

Author:

Klozenberg J. P.,McNamara B.,Thonemann P. C.

Abstract

A systematic account is given of the derivation of the dispersion relation for helicon waves in a uniform cylindrical plasma bounded by a vacuum. By retaining finite resistivity in the equations, boundary conditions present no difficulties, since the wave magnetic field is continuous through the plasma-vacuum interface. Two unexpected results are found. First, the wave attenuation remains finite in the limit of vanishing resistivity. This is due to the energy dissipated at the interface by the surface currents required to match the plasma wave field to the vacuum wave field. Zero wave attenuation for zero resistivity is recovered if electron inertia is included. Secondly, it is found that waves with azimuthal numbers m of opposite sign propagate differently, but the sense of polarization at the axis of the cylinder is independent of the sign of m.The argument of the dispersion function is complex and numerical results were obtained using a computer. The method of programming is described, and results are given applicable to propagation in metals at low temperatures, or in a typical gas discharge plasma for the m = 0 and m = ± 1 modes.An example of the amplitude of the wave fields as a function of radius is given for the axisymmetric mode, and of amplitude and phase for the m = ± 1 modes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3