Non-resonant viscous theory for the stability of a fluid-filled gyroscope

Author:

LAMBELIN JEAN-PIERRE,NADAL FRANÇOIS,LAGRANGE ROMAIN,SARTHOU ARTHUR

Abstract

In the case of a gyroscope including a cylindrical fluid-filled cavity, the classic Poinsot's coning motion can become unstable. For certain values of the solid inertia ratio, the coning angle opens under the effect of the hydrodynamic torque. The coupled dynamics of such a non-solid system is ruled by four dimensionless numbers: the small viscous parameter ε = Re−1/2 (where Re denotes the Reynolds number), the fluid–solid inertia ratio κ which quantifies the proportion of liquid relative to the total mass of the gyroscope, the solid inertia ratio σ and the aspect ratio h of the cylindrical cavity. The calculation of the hydrodynamic torque on the solid part of the gyroscope requires the preliminary evaluation of the possibly resonant flow inside the cavity. The hydrodynamic scaling used to derive such a flow essentially depends on the relative values of κ and ε. For small values of the ratio /ε (compared to 1), Gans derived an expression of the growth rate of the coning angle. The principles of Gans' approach (Gans, AIAA J., vol. 22, 1984, pp. 1465–1471) are briefly recalled but the details of the whole calculation are not given. At the opposite limit, that is for large values of /ε, the dominating flow is given by a linear inviscid theory. In order to take account of viscous effects, we propose a direct method involving an exhaustive calculation of the flow at order ε. We show that the deviations from Stewartson's inviscid theory (Stewartson, J. Fluid Mech., vol. 5, 1958, p. 577) do not originate from the viscous shear at the walls but rather from the bulk pressure at order ε related to the Ekman suction. Physical contents of Wedemeyer's heuristic theory (Wedemeyer, BRL Report N 1325, 1966) are analysed in the view of our analytical results. The latter are tested numerically in a large range of parameters. Complete Navier–Stokes (NS) equations are solved in the cavity. The hydrodynamic torque obtained by numerical integration of the stress is used as a forcing term in the coupled fluid–solid equations. Numerical results and analytical predictions show a fairly good quantitative agreement.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference39 articles.

1. A One-Cell Local Multigrid Method for Solving Unsteady Incompressible Multiphase Flows

2. Karpov B. G. 1965 The effect of Reynolds number on resonance. Tech. Rep. BRL Report 1302. Aberdeen Proving Ground, MD.

3. Karpov B. G. 1962 Experimental observations of the dynamic behaviour of liquid-filled shell. Tech. Rep. BRL Report 1171. Aberdeen Proving Ground, MD.

4. On the general motion of a liquid ellipsoid;Greenhill;Proc. Camb. Phil. Soc.,1880

5. On the precession of a resonant cylinder

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Zonal flow in a resonant precessing cylinder;Journal of Fluid Mechanics;2021-07-30

2. Triadic instability of a non-resonant precessing fluid cylinder;Comptes Rendus Mécanique;2016-06

3. Precessional instability of a fluid cylinder;Journal of Fluid Mechanics;2011-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3