Vortex generation by line plumes in a rotating stratified fluid

Author:

BUSH JOHN W. M.,WOODS ANDREW W.

Abstract

We present the results of an experimental investigation of the generation of coherent vortical structures by buoyant line plumes in rotating fluids. Both uniform and stratified ambients are considered. By combining the scalings describing turbulent plumes and geostrophically balanced vortices, we develop a simple model which predicts the scale of the coherent vortical structures in excellent accord with laboratory experiments.We examine the motion induced by a constant buoyancy flux per unit length B, released for a finite time ts, from a source of length L into a fluid rotating with angular speed Ω = f/2. When the plume discharges into a uniformly stratified environment characterized by a constant Brunt–Väisälä frequency, N>f, the fluid rises to its level of neutral buoyancy unaffected by the system rotation before intruding as a gravity current. Rotation has a strong impact on the subsequent dynamics: shear develops across the spreading neutral cloud which eventually goes unstable, breaking into a chain of anticyclonic lenticular vortices. The number of vortices n emerging from the instability of the neutral cloud, n = (0.65±0.1)Lf1/2/ (t1/2sB1/3), is independent of the ambient stratification, which serves only to prescribe the intrusion height and aspect ratio of the resulting vortex structures. The experiments indicate that the Prandtl ratio characterizing the geostrophic vortices is given by P = Nh/(fR) = 0.47±0.12; where h and R are, respectively, the half-height and radius of the vortices. The lenticular vortices may merge soon after formation, but are generally stable and persist until they are spun-down by viscous effects.When the fluid is homogeneous, the plume fluid rises until it impinges on a free surface. The nature of the flow depends critically on the relative magnitudes of the layer depth H and the rotational lengthscale Lf = B1/3/f. For H>10Lf, the ascent phase of the plume is influenced by the system rotation and the line plume breaks into a series of unstable anticylonic columns of characteristic radius (5.3±1.0)B1/3/f which typically interact and lose their coherence before surfacing. When H<10Lf, the system rotation does not influence the plume ascent, but does control the spreading of the gravity current at the free surface. In a manner analogous to that observed in the stratified ambient, shear develops across the surface current, which eventually becomes unstable and generates a series of anticyclonic surface eddies with characteristic radius (1.6±0.2)B1/3t1/3s /f2/3. These surface eddies are significantly more stable than their columnar counterparts, but less so than the lenticular eddies arising in the uniformly stratified ambient.The relevance of the study to the formation of coherent vortical structures by leads in the polar ocean and hydrothermal venting is discussed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ocean dynamics and tracer transport over the south pole geysers of Enceladus;Monthly Notices of the Royal Astronomical Society;2022-10-08

2. The transition of a line plume to round plume;Environmental Fluid Mechanics;2022-03-25

3. Inverse centrifugal effect induced by collective motion of vortices in rotating thermal convection;Nature Communications;2021-09-22

4. Dynamics of Eddies Generated by Sea Ice Leads;Journal of Physical Oceanography;2021-07-12

5. Effects of background rotation on the dynamics of multiphase plumes;Journal of Fluid Mechanics;2021-03-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3