Simulation of flow between concentric rotating spheres. Part 2. Transitions

Author:

Marcus Philip S.,Tuckerman Laurette S.

Abstract

We examine the transitions among the steady-state axisymmetric spherical Couette flows with zero, one, and two vortices per hemisphere. The steady flows are reflection symmetric with respect to the equator, but some of the transitions that we find break this symmetry. This is the first study to reproduce numerically the transitions to the one-vortex flow from the zero- and two-vortex flows. In our study, we use a numerical initial-value code to: (i) compute the bifurcation diagrams of the steady (stable and unstable) states, (ii) solve for the most unstable or least stable linear eigenmode and eigenvalue of a steady state, (iii) calculate the velocity field as a function of time during both the linear and nonlinear stages of the transitions, and (iv) determine the energy transfer mechanism into and out of the antireflection-symmetric components of the flow during the transitions.Our study provides the explanation of the laboratory observation that some transitions occur only when the inner sphere of the Couette-flow apparatus is accelerated or decelerated quickly, whereas other transitions occur only when the acceleration is slow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference31 articles.

1. Bartels, F. 1982 Taylor vortices between two concentric rotating spheres.J. Fluid Mech. 119,1–25.

2. Munson, B. R. & Joseph, D. D. 1971 Viscous incompressible flow between concentric rotating spheres. Part 2. Hydrodynamic stability.J. Fluid Mech. 49,305–318.

3. Munson, B. R. & Menguturk, M. 1975 Viscous incompressible flow between concentric rotating spheres. Part 3. Linear stability and Experiments.J. Fluid Mech. 69,705–719.

4. Mullin, T. 1982 Mutations of steady cellular flows in the Taylor experiment.J. Fluid Mech. 121,207–218.

5. Kirchgässner, K. & Sorger P. 1968 Stability analysis of branching solutions of the Navier-Stokes equations. InProc. Twelfth Intl Congress of Applied Mechanics (ed. M. Hetényi & W. G. Vincenti ).Springer.

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Improved Arrow–Hurwicz Method for the Steady-State Navier–Stokes Equations;Journal of Scientific Computing;2023-06-29

2. Electromagnetically driven anticyclonic rotation in spherical Couette flow;Journal of Fluid Mechanics;2023-04-24

3. Krylov Methods for Large-Scale Dynamical Systems: Application in Fluid Dynamics;Applied Mechanics Reviews;2023-03-20

4. Noise induced effects in the axisymmetric spherical Couette flow;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-03-13

5. Numerical investigation of distinct flow modes in a wide-gap spherical annulus using OpenMP;Waves in Random and Complex Media;2023-02-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3