On one-dimensional flow of a conducting gas between electrodes – with application to MHD thrusters

Author:

Cowley M. D.,Horlock J. H.

Abstract

Inviscid, adiabatic, one-dimensional flow of a conducting gas in the presence of crossed electric and magnetic fields is investigated for the case where the magnetic field is generated by the current being supplied to the gas. The electrode geometry and the connections to the electrical power supply are such that the magnetic field falls to zero at the downstream end of the MHD duct. The analysis allows for magnetic Reynolds number rm to be anywhere in the range 0 to ∞ The main part of the investigation is restricted to consideration of ducts with constant spacing between electrodes.The way in which the density of the gas varies along the duct with the changing magnetic field is analysed generally and the results are then applied to the case where gas is fed to the MHD duct from high pressure in a plenum chamber and where the duct exhausts to a region of negligible pressure. If the flow is choked by the converging entry to the duct and the magnetic Reynolds number is moderate to high, the main electromagnetic effect is for the j × B forces to accelerate the gas to supersonic speeds. As rm is reduced, ohmic heating becomes more important, and it may cause the flow to be choked at exit from the duct, giving rise to a reduction in mass flow. For certain ranges of rm and ratio of initial magnetic pressure to plenum-chamber pressure the flow may choke at a sonic point within the duct itself, while accelerating from subsonic to supersonic through the point.Some illustrative examples of how properties vary with distance along the duct have been computed and the consequences of the analysis for MHD thrusters are explored. The magnetic forces will augment thrust per unit cross-sectional area, the essential measure of this being the drop in magnetic pressure along the duct, but there is an upper limit on the ratio of magnetic pressure to plenum-chamber pressure for flows to be possible. Flow at low magnetic Reynolds number is favoured if the object is to increase specific thrust by reducing mass flow through the duct.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference7 articles.

1. Shapiro, A. H. 1953 Compressible Fluid Flow .Vol. I.Ronald Press.

2. Shercliff, J. A. 1965 A Textbook of Magnetohydrodynamics .Pergamon Press.

3. Shercliff, J. A. 1958 J. Fluid Mech. 3,645.

4. Kuriki, K. , Kunii, Y. & Shimizu, Y. 1983 AIAA J. 21,322.

5. Resler, E. R. & Sears, W. R. 1958 J. Aero. Sci. 25,235.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Early Years of MHD at Cambridge University Engineering Department;Fluid Mechanics And Its Applications;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3