Hydrodynamic interaction of two unequal-sized spheres in a slightly rarefied gas: resistance and mobility functions

Author:

Ying Ruoxian,Peters Michael H.

Abstract

The problem of the hydrodynamic interaction of two unequal-sized spheres in a slightly rarefied gas is treated following the singular perturbation scheme of Sone & Onishi (1978), valid at small, but finite, particle Knudsen numbers. In this method the solution to the linearized BGKW transport equation governing the gas molecular motion consists of two parts: one describing a Knudsen layer where the actual microscopic boundary conditions are applied and the other describing a Hilbert region where the Stokes equations of continuum hydrodynamics hold. The Knudsen-layer solution establishes the ‘slip’ boundary conditions for the Stokes equations. Here we clearly distinguish between particle ‘slip’ due to the type of boundary conditions and particle ‘slip’ due to lengthscale effects as measured by the Knudsen number. The present analysis has been carried out to first order in particle Knudsen number for the case of diffuse reflective molecular boundary conditions. General relationships between the first- and zero-order velocity fields, both of which are written in the form of Lamb's (1932) solution to the Stokes equation, are established. It is illustrated how these general relationships can be used to determine the force and torque acting on a single sphere translating and rotating in a slightly rarefied gas. Finally, we have treated the two-sphere problem in a slightly rarefied gas using the twin multipole expansion method of Jeffrey & Onishi (1984). Here again, general relationships are established between the solutions of the first-order fluid velocity field and the zero-order velocity field, the latter being shown to recover Jeffrey & Onishi's results for stick boundary conditions. These general relationships are subsequently used to determine the complete resistance and mobility matrices of the two-sphere system. The symmetric properties of the resistance and mobility matrices are demonstrated for slip boundary conditions, in agreement with the general proof of Landau & Lifshitz (1980) and Bedeaux, Albano & Mazur (1977).

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference32 articles.

1. Welander, P. 1954 On the temperature jump in a rarefied gas.Ark. Fys. 7,507–553.

2. Kim, S. & Mifflin, R. T. 1985 The resistance and mobility functions for two equal spheres in low-Reynolds number flow.Phys. Fluids 28,2033–2045.

3. Cercignani, C. 1975 Theory and Application of the Boltzmann Equation.Scottish Academic Press.

4. O'Neill, M. E. & Majumdar, S. R. 1970 Asymmetrical slow viscous fluid motions caused by the translation or rotation of two spheres. Part I: The determination of exact solutions for any values of the ratio of radii and separation parameters.Z. Angew. Math. Phys. 21,164–187.

5. Goldman, A. J. , Cox, R. G. & Brenner, H. 1966 The slow motion of two identical arbitrarily oriented spheres through a viscous fluid.Chem. Engng Sci. 21,1151–1170.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3