Quenching of vortex breakdown oscillations via harmonic modulation

Author:

LOPEZ J. M.,CUI Y. D.,MARQUES F.,LIM T. T.

Abstract

Vortex breakdown is a phenomenon inherent to many practical problems, such as leading-edge vortices on aircraft, atmospheric tornadoes, and flame-holders in combustion devices. The breakdown of these vortices is associated with the stagnation of the axial velocity on the vortex axis and the development of a near-axis recirculation zone. For large enough Reynolds number, the breakdown can be time-dependent. The unsteadiness can have serious consequences in some applications, such as tail-buffeting in aircraft flying at high angles of attack. There has been much interest in controlling the vortex breakdown phenomenon, but most efforts have focused on either shifting the threshold for the onset of steady breakdown or altering the spatial location of the recirculation zone. There has been much less attention paid to the problem of controlling unsteady vortex breakdown. Here we present results from a combined experimental and numerical investigation of vortex breakdown in an enclosed cylinder in which low-amplitude modulations of the rotating endwall that sets up the vortex are used as an open-loop control. As expected, for very low amplitudes of the modulation, variation of the modulation frequency reveals typical resonance tongues and frequency locking, so that the open-loop control allows us to drive the unsteady vortex breakdown to a prescribed periodicity within the resonance regions. For modulation amplitudes above a critical level that depends on the modulation frequency (but still very low), the result is a periodic state synchronous with the forcing frequency over an extensive range of forcing frequencies. Of particular interest is the spatial form of this forced periodic state: for modulation frequencies less than about twice the natural frequency of the unsteady breakdown, the oscillations of the near-axis recirculation zone are amplified, whereas for modulation frequencies larger than about twice the natural frequency the oscillations of the recirculation zone are quenched, and the near-axis flow is driven to the steady axisymmetric state. Movies are available with the online version of the paper.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3