Nonlinear mode selection in a model of trailing line vortices

Author:

ABID MALEK

Abstract

Nonlinear mode selection, from initial random Gaussian field perturbations, in a model of trailing line vortices (swirling jets), in the breakdown regime, is addressed by direct numerical simulations with a Reynolds number equal to 1000. A new concept of mode activity in the nonlinear evolution is introduced. The selected modes, according to their activities, are reported and related to strain eigenvectors (with maximum eigenvalues) of the basic flow corresponding to the trailing line vortex under consideration. The selected modes are also related to results from the linear eigenmode (exponential growth) instability theory using the concept of dispersion relation envelope. It is found that the global mode hypothesis of the linear eigenmode theory is violated near the flow axis when the swirl number increases. However, far from the flow axis the linear eigenmode theory is in good agreement with the nonlinear evolution in the breakdown regime. The discrepancy between the nonlinear evolution and the linear eigenmode theory is related to the transient growth of optimal perturbations resulting from the non-normality of the linearized Navier–Stokes equations about shear flows. A clear distinction between an eigenmode, an optimal perturbation (non-modal) and a direct numerical simulation (DNS) mode is made. It is shown that the algebraic (transient) growth contributions from the inviscid continuous spectrum could trigger nonlinearities near the flow axis. The DNS mode selected in the nonlinear regime coincides with the long-wave eigenmode benefiting from the algebraic growth in the linear regime. This eigenmode is different from the short-wave eigenmode with the absolute maximum exponential growth. Although it is promoted by transients, in the linear regime, the long-wave component is selected nonlinearly.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3