Mixed bottom-friction–Kelvin–Helmholtz destabilization of source-driven abyssal overflows in the ocean

Author:

SWATERS GORDON E.

Abstract

Source-driven ocean currents that flow over topographic sills are important initiation sites for the abyssal component of the thermohaline circulation. These overflows exhibit vigorous space and time variability over many scales as they progress from a predominately gravity-driven downslope flow to a geostrophic along-slope current. Observations show that in the immediate vicinity of a sill, grounded abyssal ocean overflows can possess current speeds greater than the local long internal gravity wave speed with bottom friction and downslope gravitational acceleration dominating the flow evolution. It is shown that these dynamics lead to the mixed frictionally induced and Kelvin–Helmholtz instability of grounded abyssal overflows. Within the overflow, the linearized instabilities correspond to bottom-intensified baroclinic roll waves, and in the overlying water column amplifying internal gravity waves are generated. The stability characteristics are described as functions of the bottom drag coefficient and slope, Froude, bulk Richardson and Reynolds numbers associated with the overflow and the fractional thickness of the abyssal current compared to the mean depth of the overlying water column. The marginal stability boundary and the boundary separating the parameter regimes in which the most unstable mode has a finite or infinite wavenumber are determined. When it exists, the high-wavenumber cutoff is obtained. Conditions for the possible development of an ultraviolet catastrophe are determined. In the infinite-Reynolds-number limit, an exact solution is obtained which fully includes the effects of mean depth variations in the overlying water column associated with a sloping bottom. For parameter values characteristic of the Denmark Strait overflow, the most unstable mode has a wavelength of about 19 km, a geostationary period of about 14 hours, an e-folding amplification time of about 2 hours and a downslope phase speed of about 74 cm s−1.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3