Rayleigh–Taylor instability of an inclined buoyant viscous cylinder

Author:

LISTER JOHN R.,KERR ROSS C.,RUSSELL NICK J.,CROSBY ANDREW

Abstract

The Rayleigh–Taylor instability of an inclined buoyant cylinder of one very viscous fluid rising through another is examined through linear stability analysis, numerical simulation and experiment. The stability analysis represents linear eigenmodes of a given axial wavenumber as a Fourier series in the azimuthal direction, allowing the use of separable solutions to the Stokes equations in cylindrical polar coordinates. The most unstable wavenumber k∗ is long-wave if both the inclination angle α and the viscosity ratio λ (internal/external) are small; for this case, k∗ ∝ max{α, (λ ln λ−1)1/2} and thus a small angle in experiments can have a significant effect for λ ≪ 1. As α increases, the maximum growth rate decreases and the upward propagation rate of disturbances increases; all disturbances propagate without growth if the cylinder is sufficiently close to vertical, estimated as α ≳ 70°. Results from the linear stability analysis agree with numerical calculations for λ = 1 and experimental observations. A point-force numerical method is used to calculate the development of instability into a chain of individual plumes via a complex three-dimensional flow. Towed-source experiments show that nonlinear interactions between neighbouring plumes are important for α ≳ 20° and that disturbances can propagate out of the system without significant growth for α ≳ 40°.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3