The influence of swirl and confinement on the stability of counterflowing streams

Author:

Goddard J. D.,Didwania A. K.,Wu C.-Y.

Abstract

A linear stability analysis of laterally confined swirling flow is given, of the type described by Long's equation in the inviscid limit or by the von Kármán similarity equations in the absence of lateral confinement. The flow of interest involves identical counterflowing fluid streams injected with equal velocity W0 through opposing porous disks, rotating with angular velocities Ω and ±Ω, respectively, about a common normal axis. By means of mass transfer experiments on an aqueous system of this type we have detected an apparent hydrodynamic instability having the appearance of an inviscid supercritical bifurcation at a certain |Ω| > 0. As an attempt to elucidate this phenomenon, linear stability analyses are performed on several idealized flows, by means of a numerical Galerkin technique. An analysis of high-Reynolds-number similarity flow predicts oscillatory instability for all non-zero Ω. The spatial structure of the most unstable modes suggests that finite container geometry, as represented by the confining cylindrical sidewalls, may have a strong influence on flow stability. This is borne out by an inviscid stability analysis of a confined flow described by Long's equation. This analysis suggests a novel bifurcation of the inviscid variety, which serves qualitatively to explain the results of our mass transfer experiments.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference28 articles.

1. Chen, K. K. & Libby, P. A. 1968 Boundary layers with small departures from Falkner-Skan profile.J. Fluid Mech. 33,273.

2. Acrivos, A. & Goddard, J. D. 1966 Asymptotic expansions for laminar forced-convection heat and mass transfer, Part 1. Boundary layer flows.J. Fluid Mech. 24,339.

3. Sivashinsky, G. I. & Sohrab, S. H. 1987 The influence of rotation on premixed flames in stagnation point flow.Combust. Sci. Tech. 53,67.

4. Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.

5. Fletcher, A. J. 1984 Computational Galerkin Method. Springer.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3