A computational parameter study for the three-dimensional shock–bubble interaction

Author:

NIEDERHAUS JOHN H. J.,GREENOUGH J. A.,OAKLEY J. G.,RANJAN D.,ANDERSON M. H.,BONAZZA R.

Abstract

The morphology and time-dependent integral properties of the multifluid compressible flow resulting from the shock–bubble interaction in a gas environment are investigated using a series of three-dimensional multifluid-Eulerian simulations. The bubble consists of a spherical gas volume of radius 2.54 cm (128 grid points), which is accelerated by a planar shock wave. Fourteen scenarios are considered: four gas pairings, including Atwood numbers −0.8 < A < 0.7, and shock strengths 1.1 < M ≤ 5.0. The data are queried at closely spaced time intervals to obtain the time-dependent volumetric compression, mean bubble fluid velocity, circulation and extent of mixing in the shocked-bubble flow. Scaling arguments based on various properties computed from one-dimensional gasdynamics are found to collapse the trends in these quantities successfully for fixed A. However, complex changes in the shock-wave refraction pattern introduce effects that do not scale across differing gas pairings, and for some scenarios with A > 0.2, three-dimensional (non-axisymmetric) effects become particularly significant in the total enstrophy at late times. A new model for the total velocity circulation is proposed, also based on properties derived from one-dimensional gasdynamics, which compares favourably with circulation data obtained from calculations, relative to existing models. The action of nonlinear-acoustic effects and primary and secondary vorticity production is depicted in sequenced visualizations of the density and vorticity fields, which indicate the significance of both secondary vorticity generation and turbulent effects, particularly for M > 2 and A > 0.2. Movies are available with the online version of the paper.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference58 articles.

1. Higher order Godunov methods for general systems of hyperbolic conservation laws

2. Object-oriented implementations of adaptive mesh refinement algorithms;Crutchfield;Sci. Prog.,1993

3. Vorticity generation by shock propagation through bubbles in a gas

4. Niederhaus J. H. J. 2007 A computational parameter study for three-dimensional shock–bubble interactions. PhD thesis, University of Wisconsin-Madison.

5. Large Eddy Simulation of High-Reynolds-Number Free and Wall-Bounded Flows

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3