Author:
NIEDERHAUS JOHN H. J.,GREENOUGH J. A.,OAKLEY J. G.,RANJAN D.,ANDERSON M. H.,BONAZZA R.
Abstract
The morphology and time-dependent integral properties of the multifluid compressible flow resulting from the shock–bubble interaction in a gas environment are investigated using a series of three-dimensional multifluid-Eulerian simulations. The bubble consists of a spherical gas volume of radius 2.54 cm (128 grid points), which is accelerated by a planar shock wave. Fourteen scenarios are considered: four gas pairings, including Atwood numbers −0.8 < A < 0.7, and shock strengths 1.1 < M ≤ 5.0. The data are queried at closely spaced time intervals to obtain the time-dependent volumetric compression, mean bubble fluid velocity, circulation and extent of mixing in the shocked-bubble flow. Scaling arguments based on various properties computed from one-dimensional gasdynamics are found to collapse the trends in these quantities successfully for fixed A. However, complex changes in the shock-wave refraction pattern introduce effects that do not scale across differing gas pairings, and for some scenarios with A > 0.2, three-dimensional (non-axisymmetric) effects become particularly significant in the total enstrophy at late times. A new model for the total velocity circulation is proposed, also based on properties derived from one-dimensional gasdynamics, which compares favourably with circulation data obtained from calculations, relative to existing models. The action of nonlinear-acoustic effects and primary and secondary vorticity production is depicted in sequenced visualizations of the density and vorticity fields, which indicate the significance of both secondary vorticity generation and turbulent effects, particularly for M > 2 and A > 0.2. Movies are available with the online version of the paper.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference58 articles.
1. Higher order Godunov methods for general systems of hyperbolic conservation laws
2. Object-oriented implementations of adaptive mesh refinement algorithms;Crutchfield;Sci. Prog.,1993
3. Vorticity generation by shock propagation through bubbles in a gas
4. Niederhaus J. H. J. 2007 A computational parameter study for three-dimensional shock–bubble interactions. PhD thesis, University of Wisconsin-Madison.
5. Large Eddy Simulation of High-Reynolds-Number Free and Wall-Bounded Flows
Cited by
157 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献