On pressure invariance, wake width and drag prediction of a bluff body in confined flow

Author:

YEUNG W. W. H.

Abstract

In the present investigation, the form drag on a bluff body in confined flow is studied. From the observation of invariance in pressure distribution between a disk and a flat plate normal to free upstream in unconfined flow, a linear relation linking the drag to the base pressure is derived when the potential-flow model by Parkinson & Jandali (J. Fluid Mech., vol. 40, 1970, p. 577) is incorporated. A theoretical wake width deduced from well-documented experimental data for a disk is proposed such that the wake Strouhal number is independent of inclination. This width, when combined with the momentum equation and solved simultaneously with the aforementioned linear equation, leads to realistic predictions of the drag and the base pressure. The method is consistent when applied to a cone of arbitrary vertex angle, a circular cylinder at subcritical Reynolds numbers and a sphere at subcritical as well as supercritical Reynolds numbers. The case of the inclined disk is also discussed. As the pressure distribution is invariant under wall constraint, analytical expressions for the effect of confinement on the loading of bluff bodies are derived and found to provide the correct trend of experimental data.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3