Breaking of standing internal gravity waves through two-dimensional instabilities

Author:

Bouruet-Aubertot Pascale,Sommeria J.,Staquet C.

Abstract

The evolution of an internal gravity wave is investigated by direct numerical computations. We consider the case of a standing wave confined in a bounded (square) domain, a case which can be directly compared with laboratory experiments. A pseudo-spectral method with symmetries is used. We are interested in the inertial dynamics occurring in the limit of large Reynolds numbers, so a fairly high spatial resolution is used (1292 or 2572), but the computations are limited to a two-dimensional vertical plane. We observe that breaking eventually occurs, whatever the wave amplitude: the energy begins to decrease after a given time because of irreversible transfers of energy towards the dissipative scales. The life time of the coherent wave, before energy dissipation, is found to be proportional to the inverse of the amplitude squared, and we explain this law by a simple theoretical model. The wave breaking itself is preceded by a slow transfer of energy to secondary waves by a mechanism of resonant interactions, and we compare the results with the classical theory of this phenomenon: good agreement is obtained for moderate amplitudes. The nature of the events leading to wave breaking depends on the wave frequency (i.e. on the direction of the wave vector); most of the analysis is restricted to the case of fairly high frequencies. The maximum growth rate of the inviscid wave instability occurs in the limit of high wavenumbers. We observe that a well-organized secondary plane wave packet is excited. Its frequency is half the frequency of the primary wave, corresponding to an excitation by a parametric instability. The mechanism of selection of this remarkable structure, in the limit of small viscosities, is discussed. Once this secondary wave packet has reached a high amplitude, density overturning occurs, as well as unstable shear layers, leading to a rapid transfer of energy towards dissipative scales. Therefore the condition of strong wave steepness leading to wave breaking is locally attained by the development of a single small-scale parametric instability, rather than a cascade of wave interactions. This fact may be important for modelling the dynamics of an internal wave field.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3