Particle clustering in periodically forced straining flows

Author:

MARSHALL J. S.

Abstract

Numerous biomedical and industrial applications require separation or sorting of particles in systems in which it is undesirable to allow particle adhesion to a surface, such as a centrifuge wall and a filter fibre. Such systems typically involve either adhesive particles which could easily foul such surfaces or very delicate particles as is the case with suspensions of biological cells. The current study explores an approach for particle separation based on exposure to an oscillating straining flow, which would be typical for peristaltic and other types of contractive wall motions in a channel or tube. We find that particles immersed in an oscillating straining flow are attracted to the nodal points of the straining field, a phenomenon which we refer to as ‘oscillatory clustering’. A simplified theory of this process is developed for cases with isolated particles immersed in an unbounded uniform straining flow, in which the particle motion is found to be governed by a damped Mathieu equation. Moreover, the drift velocity imposed on particles through oscillatory clustering is sufficient to suspend them against a downward gravitational force in a limit-cycle oscillatory path. Theoretical approximations for the average suspension height and oscillation amplitude are obtained. A discrete-element method (DEM) for colliding and adhesive particles is then employed to examine oscillatory clustering for more realistic systems in which particles collide with each other and with container walls. The DEM is used to examine oscillatory clustering of a particle suspension in an oscillating box and for standing peristaltic waves in a channel, both with and without particle adhesion forces and gravitational forces.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3