Characterization of coherent vortical structures in a supersonic turbulent boundary layer

Author:

PIROZZOLI SERGIO,BERNARDINI MATTEO,GRASSO FRANCESCO

Abstract

A spatially developing supersonic boundary layer at Mach 2 is analysed by means of direct numerical simulation of the compressible Navier--Stokes equations, with the objective of quantitatively characterizing the coherent vortical structures. The study shows structural similarities with the incompressible case. In particular, the inner layer is mainly populated by quasi-streamwise vortices, while in the outer layer we observe a large variety of structures, including hairpin vortices and hairpin packets. The characteristic properties of the educed structures are found to be nearly uniform throughout the outer layer, and to be weakly affected by the local vortex orientation. In the outer layer, typical core radii vary in the range of 5–6 dissipative length scales, and the associated circulation is approximately constant, and of the order of 180 wall units. The statistical properties of the vortical structures in the outer layer are similar to those of an ensemble of non-interacting closed-loop vortices with a nearly planar head inclined at an angle of approximately 20° with respect to the wall, and with an overall size of approximately 30 dissipative length scales.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3