Application of the Ffowcs Williams/Hawkings equation to two-dimensional problems

Author:

GUO Y. P.

Abstract

This paper discusses the application of the Ffowcs Williams/Hawkings equation to two-dimensional problems. A two-dimensional version of this equation is derived, which not only provides a very efficient way for numerical implementation, but also reveals explicitly the features of the source mechanisms and the characteristics of the far-field noise associated with two-dimensional problems. It is shown that the sources can be interpreted, similarly to those in three-dimensional spaces, as quadrupoles from turbulent flows, dipoles due to surface pressure fluctuations on the bodies in the flow and monopoles from non-vanishing normal accelerations of the body surfaces. The cylindrical spreading of the two-dimensional waves and their far-field directivity become apparent in this new version. It also explicitly brings out the functional dependence of the radiated sound on parameters such as the flow Mach number and the Doppler factor due to source motions. This dependence is shown to be quite different from those in three-dimensional problems. The two-dimensional version is numerically very efficient because the domains of the integration are reduced by one from the three-dimensional version. The quadrupole integrals are now in a planar domain and the dipole and monopole integrals are along the contours of the two-dimensional bodies. The calculations of the retarded-time interpolation of the integrands, a time-consuming but necessary step in the three-dimensional version, are completely avoided by making use of fast Fourier transform. To demonstrate the application of this, a vortex/airfoil interaction problem is discussed, which has many practical applications and involves important issues such as vortex shedding from the trailing edge.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3