Motion of a two-dimensional elastic capsule in a branching channel flow

Author:

WOOLFENDEN H. C.,BLYTH M. G.

Abstract

The transit of a two-dimensional elastic fluid-filled capsule through a channel with a side branch is investigated numerically. The mathematical formulation allows for a capsule carried in a pressure-driven flow of fluid of generally different viscosity to that inside the capsule. Far upstream and downstream in the main channel, and downstream in the side branch, the fluid velocity profiles are assumed to adopt those of unidirectional Poiseuille flow with prescribed flow rates. The capsule boundary is treated as a two-dimensional elastic membrane developing elastic tensions and bending moments according to simple constitutive laws. A boundary-integral formulation allows for the explicit computation of the fluid pressures upstream and downstream of the branching. The novelty of the approach is the inclusion of a notional boundary at the entrance to the side branch, which avoids the need to collocate the channel ends. The deformation experienced by the capsule in the region of the junction is found to depend strongly on the branch angle. The deformation is ameliorated by increasing the membrane stiffness or lowering the viscosity of the suspending fluid relative to the encapsulated fluid. When a capsule exits the branch region, a distance of many decades of capsule diameters is required before the capsule relaxes to an equilibrium shape. Capsule residence times in the vicinity of the branch region can be considerable, depending on the line of approach into the junction and the capsule deformability. The path selection of a cell at a branch junction can depend crucially on capsule deformability: capsules with different elastic properties may follow different routes out of the junction in otherwise identical flow conditions.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3