A fundamental limit on the balance of power in a transpiration-controlled channel flow

Author:

BEWLEY THOMAS R.

Abstract

This paper is a direct sequel to Bewley & Aamo (J. Fluid Mech., vol. 499, 2004, pp. 183–196). It was conjectured in that paper, based on the numerical evidence available at that time, that the minimum drag of a constant mass flux channel flow might in fact be that of the laminar flow. This conjecture turned out to be false; Min et al. (J. Fluid Mech., vol. 558, 2006, 309318) discovered a curious control strategy which in fact reduces the time-averaged drag to sub-laminar levels. The present paper establishes rigorously that the power of the control input applied at the walls is always larger than the power saved (due to drag reduction below the laminar level) for any possible control distribution, including that proposed by Min et al. (2006), thus establishing that, energetically (that is accounting for the power saved due to drag reduction and the power exerted by application of the control), the optimal control solution is necessarily to relaminarize the flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Use of heated corrugations for propulsion;Journal of Fluid Mechanics;2024-02-05

2. Turbulent Drag Reduction by Streamwise Traveling Waves of Wall-Normal Forcing;Annual Review of Fluid Mechanics;2024-01-19

3. Effects of wall vibrations on channel flows;Journal of Fluid Mechanics;2023-07-28

4. Propulsion due to thermal streaming;Journal of Fluid Mechanics;2023-07-17

5. A fundamental limit on energy savings in controlled channel flow, and how to beat it;Journal of Fluid Mechanics;2023-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3