Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer

Author:

Willmarth W. W.,Wooldridge C. E.

Abstract

Measurements of the turbulent pressure field at the wall beneath a thick (5-inch) turbulent boundary layer produced by natural transition on a smooth surface are reported. The data include the mean-square pressure, parallel to the stream, and spatial correlation of the pressure transverse to the stream.The root-mean-square wall pressure was 2.19 times the wall shear stress. The power spectra of the pressure were found to scale with the free-stream speed and the boundary-layer displacement thickness. A few tests with a rough surface showed that the increase in root-mean-square wall pressure was greater than the increase in wall shear stress.The space-time correlation measurements parallel to the stream direction exhibit maxima at certain time delays corresponding to the convection of pressure-producing eddies at speeds varying from 0.56 to 0.83 times the stream speed. The lower convection speeds are measured when the spatial separation of the pressure transducers is small, or when only the pressure fluctuations at high frequencies are correlated. Higher convection speeds are observed when the spatial separation of the pressure transducers is large, or when only low frequencies are correlated. The result that low-frequency pressure fluctuations have the highest convection speed is in agreement with the measurements of Corcos (1959, 1962) in a fully turbulent tube flow. Analysis of these measurements also shows that both large- and small-scale pressure-producing eddies decay after travelling a distance proportional to their scale. More precisely, a pressure-producing eddy of large or small wavelength λ decays and vanishes after travelling a distance of approximately 6λ.The transverse spatial correlation of the wall-pressure fluctuations was measured and compared with the longitudinal scale. Both the transverse and the longitudinal scale of the pressure fluctuations were of the order of the boundary-layer displacement thickness. The transverse and longitudinal scales of both large- and small-scale wall-pressure fluctuations were also measured and were also found to be approximately the same.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference19 articles.

1. Uberoi, M. S. 1953 J. Aero. Sci. 20,197.

2. Lilley, G. M. & Hodgson, T. H. 1960 AGARD Rep. no. 276.

3. Kraichnan, R. H. 1956a J. Acoust. Soc. Amer. 28,64.

4. Willmarth, W. W. 1958b Rev. Sci. Inst. 29,218.

5. Coles, D. 1953 Jet Propulsion Lab., Calif. Inst. Tech., Rep. no. 20-69; or 1954 Z.A.M.P. 5,181.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3