Author:
Wygnanski I.,Fiedler H. E.
Abstract
The two-dimensional incompressible mixing layer was investigated by using constant-temperature, linearized hot wire anemometers. The measurements were divided into three categories: (1) the conventional average measurements; (2) time-average measurements in the turbulent and the non-turbulent zones; (3) ensemble average measurements conditioned to a specific location of the interface. The turbulent energy balance was constructed twice, once using the conventional results and again using the turbulent zone results. Some differences emerged between the two sets of results. It appears that the mixing region can be divided into two regions, one on the high velocity side which resembles the outer part of a wake and the other on the low velocity side which resembles a jet. The binding turbulent–non-turbulent interfaces seem to move independently of each other. There is a strong connexion between the instantaneous location of the interface and the axial velocity profile. Indeed the well known exponential mean velocity profile never actually exists at any given instant. In spite of the complexity of the flow the simple concepts of eddy viscosity and eddy diffusivity appear to be valid within the turbulent zone.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference21 articles.
1. Kibens, V. 1968 Doctoral Dissertation,Johns Hopkins University.
2. Bradshaw, P. 1967 J. Fluid Mech. 27,209.
3. Phillips, O. M. 1967 J. Fluid Mech. 27,131.
4. Demetriades, A. 1968 J. Fluid Mech. 34,465.
5. Phillips, O. M. 1955 Proc. Camb. Phil. Soc. 51,270.
Cited by
513 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献