Nonlinear dynamics of forced transitional jets: periodic and chaotic attractors

Author:

Broze George,Hussain Fazle

Abstract

Conclusive experimental evidence is presented for the existence of a low-dimensional temporal dynamical system in an open flow, namely the near field of an axisymmetric, subsonic free jet. An initially laminar jet (4 cm air jet in the Reynolds number range 1.1 × 104 [Lt ] ReD × 9.1 × 104) with a top-hat profile was studied using single-frequency, longitudinal, bulk excitation. Two non-dimensional control parameters – forcing frequency StD (≡fexD/Ue, where fez is the excitation frequency, D is the jet exit diameter and Ue is the exit velocity) and forcing amplitude af (≡ uf/Ue, where uf is the jet exit r.m.s. longitudinal velocity fluctuation at the excitation frequency) – were varied over the ranges 10-4 < af < 0.3 and 0.3 < StD < 3.0 in order to construct a phase diagram. Periodic and chaotic states were found over large domains of the parameter space. The periodic attractors correspond to stable pairing (SP) and stable double pairing (SDP) of rolled-up vortices. One chaotic attractor, near SP in the parameter space, results from nearly periodic modulations of pairing (NPMP) of vortices. At large scales (i.e. approximately the size of the attractor) in phase space, NPMP exhibits approximately quasi-periodic behaviour, including modulation sidebands around ½fex in u-spectra, large closed loops in its Poincaré sections, correlation dimension v ∼ 2 and largest Lyapunov exponent λ1 ∼ 0. But investigations at smaller scales (i.e. distances greater than, but of the order of, trajectory separation) in phase space reveal chaos, as shown by v > 2 and λ1 > 0. The other chaotic attractor, near SDP, results from nearly periodic modulations of the first vortex pairing but chaotic modulations of the second pairing and has a broadband spectrum, a dimension 2.5 [Lt ] v [Lt ] 3 and the largest Lyapunov exponent 0.2 [Lt ] λ1 [Lt ] 0.7 bits per orbit (depending on measurement locations in physical and parameter spaces).A definition that distinguishes between physically and dynamically open flows is proposed and justified by our experimental results. The most important conclusion of this study is that a physically open flow, even one that is apparently dynamically open due to convective instability, can exhibit dynamically closed behaviour as a result of feedback. A conceptual model for transitional jets is proposed based on twodimensional instabilities, subharmonic resonance and feedback from downstream vortical structures to the nozzle lip. Feedback was quantified and shown to affect the exit fundamental–subharmonic phase difference ϕ – a crucial variable in subharmonic resonance and, hence, vortex pairing. The effect of feedback, the sensitivity of pairings to ϕ, the phase diagram, and the documented periodic and chaotic attractors demonstrate the validity of the proposed conceptual model.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference67 articles.

1. Laufer, J. & Monkewitz, P. 1980 AIAA Paper 80-0962.

2. Zaman, K. M. B. Q. & Hussain, A. K. M. F. 1980 J. Fluid Mech. 101,449.

3. Virk, D. P. S. 1989 Numerical study of feedback and subharmonic resonance in free shear layers. MS thesis,University of Houston.

4. Sreenivasan, K. R. 1986 In Dimensions and Entropies in Chaotic Systems (ed. G. Mayer-Kress ),pp. 222–230.Springer.

5. Vastano, J. & Pulliam, T. 1989 In Proc. ASME-ASCE Forum on Chaotic Dynamics, UCSD, La Jolla, CA, July 10–12 , 1989.

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3