Growth and breakdown of low-speed streaks leading to wall turbulence

Author:

ASAI MASAHITO,KONISHI YASUFUMI,OIZUMI YUKI,NISHIOKA MICHIO

Abstract

Two-dimensional local wall suction is applied to a fully developed turbulent boundary layer such that near-wall turbulence structures are completely sucked out, but most of the turbulent vortices in the original outer layer can survive the suction and cause the resulting laminar flow to undergo re-transition. This enables us to observe and clarify the whole process by which the suction-surviving strong vortical motions give rise to near-wall low-speed streaks and eventually generate wall turbulence. Hot-wire and particle image velocimetry (PIV) measurements show that low-frequency velocity fluctuations, which are markedly suppressed near the wall by the local wall suction, soon start to grow downstream of the suction. The growth of low-frequency fluctuations is algebraic. This characterizes the streak growth caused by the suction-surviving turbulent vortices. The low-speed streaks obtain almost the same spanwise spacing as that of the original turbulent boundary layer without the suction even in the initial stage of the streak development. This indicates that the suction-surviving turbulent vortices are efficient in exciting the necessary ingredients for the wall turbulence, namely, low-speed streaks of the correct scale. After attaining near-saturation, the low-speed streaks soon undergo sinuous instability to lead to re-transition. Flow visualization shows that the streak instability and its subsequent breakdown occur at random in space and time in spite of the spanwise arrangement of streaks being almost periodic. Even under the high-intensity turbulence conditions, the sinuous instability amplifies disturbances of almost the same wavelength as predicted from the linear stability theory, though the actual growth is in the form of a wave packet with not more than two waves. It should be emphasized that the mean velocity develops the log-law profile as the streak breakdown proceeds. The transient growth and eventual breakdown of low-speed streaks are also discussed in connection with the critical condition for the wall-turbulence generation.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference37 articles.

1. Relaminarization in highly accelerated turbulent boundary layers

2. Schoppa W. & Hussain F. 1997 Genesis and dynamics of coherent structures in near-wall turbulence: a new look. In Self-Sustaining Mechanisms of Wall Turbulence (ed. R. L. Panton), chap. 16, pp. 385–422. Computational Mechanics.

3. Experimental investigation of the instability of spanwise-periodic low-speed streaks

4. Experiments on the stability of streamwise streaks in plane Poiseuille flow

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3