Stability of the developing laminar flow in a parallel-plate channel

Author:

Chen T. S.,Sparrow E. M.

Abstract

The hydrodynamic stability of the developing laminar flow in the entrance region of a parallel-plate channel is investigated using the theory of small disturbances. The stability of the fully developed flow is also re-examined. A wide range of analytical (i.e. asymptotic) and numerical methods are employed in the stability investigation. Among the asymptotic methods, each of three viscous solutions (singular, regular and composite) is used along with the inviscid solution to provide critical Reynolds numbers and complete neutral stability curves. Two numerical methods, finite differences and stepwise integration, are applied to calculate critical Reynolds numbers. The basic flow in the development region is treated from two stand-points: as a channel velocity profile and as a boundary-layer velocity profile. Extensive comparisons among the various methods and flow models disclose their various strengths and ranges of applicability. As a general result, it is found that the critical Reynolds number decreases monotonically with increasing distance from the channel entrance, approaching the fully developed value as a limit.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference24 articles.

1. Nachtsheim, P. R. 1964 NASA TN D-2414.

2. Gröhne, D. 1954 Z. Angew. Math. Mech. 34,344.

3. Tietjens, O. 1925 Z. Angew. Math. Mech. 5,200.

4. Heisenberg, W. 1924 Ann. Phys. 74,577.

5. Lock, R. C. 1954 Proc. Camb. Phil. Soc. 50,105.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3