Observations on oblique shock waves in gaseous detonations

Author:

Edwards D. H.,Jones T. G.,Price B.

Abstract

An account is given of photographic and pressure observations made on the oblique shock waves occurring in the wake of self-sustaining detonation waves in hydrogen-oxygen mixtures initially at atmospheric pressure. Four explosion tubes were employed, of which three are of circular cross-section with internal diameters of 10, 5 and 1·6 cm and the fourth is a square-section tube of side 1·5 in.On the assumption that the oblique shocks are sufficiently weak to be regarded as Mach waves, the flow Mach number relative to the detonation front is determined; these are found to be substantially higher than the values predicted by deal one-dimensional theory. The measured flow Mach numbers in the rarefaction are then used to calculate the pressure distribution in this region on the basis of the supersonic nozzle model due to Fay (1959, 1962). The predictions of this model are found to disagree with with the observed static pressure profiles. Moreover, the pressure following the initial peak persists at a higher value than the theoretical for distances of the order of 5–10 cm behind the front. This phenomenon implies that the wall boundary-layer pressure remains higher than the C-J value and it is suggested that the pressure difference across the boundary layer can account for the formation of the oblique waves.The supersonic features of the flow can be accounted for by the turbulent-structure hypothesis of White (1961). Some validation of this hypothesis is provided here by the observation of the absence of the oblique shocks in overdriven detonation waves caused by the diminished effects of turbulence. This observation is consistent with the view that the oblique shocks are generated by the pressure difference across the boundary layer near the front as this difference would also be diminished in an over-driven wave.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rotating detonation combustors and their similarities to rocket instabilities;Progress in Energy and Combustion Science;2019-07

2. Numa Manson on velocity deficits and detonation stability;Shock Waves;2008-05-10

3. The hydrodynamic structure of unstable cellular detonations;Journal of Fluid Mechanics;2007-05-21

4. Single-Cycle Unsteady Nozzle Phenomena in Pulse Detonation Engines;Journal of Propulsion and Power;2007-03

5. Unsteady Nozzle Design for Pulse Detonation Engines;41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit;2005-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3