Parametric instability in a rotating cylinder of gas subject to sinusoidal axial compression. Part 2. Weakly nonlinear theory

Author:

RACZ J.-P.,SCOTT J. F.

Abstract

A weakly nonlinear analysis is presented of parametric instability in a rotating cylinder subject to periodic axial compression by small sinusoidal oscillations of one of its ends (‘the piston’). Amplitude equations are derived for the pair of parametrically resonant (primary) inertial modes which were found to arise from linear instability in Part 1. These equations introduce an infinity of geostrophic mode amplitudes, representing a nonlinear modification of the mean flow, for which evolution equations are also derived. Consequences of the total system of equations are investigated for axisymmetric modes. Different possible outcomes are found at large times: (a) a fixed point, representing a saturated state in which the oscillatory toroidal vortices of the primary mode are phase-locked to the piston motion with half its frequency; (b) a limit cycle or chaotic attractor, corresponding to slow-time oscillations of the primary mode; or (c) exponential divergence of the amplitudes to infinity. The latter outcome, a necessary condition for which is derived in the form of a threshold piston amplitude for divergence, invalidates the theory, inducing a gross change in the character of the flow and providing a route out of the weakly nonlinear regime. Non-zero fixed-point branches arise via bifurcations from both sides of the linear neutral curve, where the basic flow changes local stability. The lower-amplitude branch is shown to be unstable, while the upper one may lose local stability, resulting in a Hopf bifurcation to a limit cycle, which can subsequently become aperiodic via a series of further bifurcations. Typically, during the resulting oscillations, whether periodic or not, the perturbation first grows from small amplitude owing to basic-flow instability, then nonlinear detuning of the parametric resonance causes decay back to small amplitude in the second half of the cycle, which then restarts.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3