Experiments on standing bubbles in a vertical pipe

Author:

IOIO GENNARO DELLO,WOODS ANDREW W.

Abstract

We present a series of laboratory experiments in which a steady stream of air is supplied through a small hole in the wall of a vertical pipe of rectangular cross-section down which there is a steady flux of water. For a range of liquid flow rates, the air forms a steady standing bubble whose nose is attached to the point of air supply. The steady bubble sheds a flux of much smaller air bubbles at its base, located downstream of the air injection point. The minimum liquid speed for which steady standing bubbles develop occurs at a particular Froude number of the liquid flow, Frd = U/$/sqrt{\it gd}$ = 0.38, where U is the upstream speed, g the acceleration due to gravity and d the width of the cell. These trapped bubbles are distinct from the freely rising Taylor bubble, in that the Froude number at the nose is variable. Also, on a length scale greater than that influenced by surface tension, we find that the bubble nose asymptotes to a cusp-like shape, with an angle that decreases with Frd. We show that numerical solutions of the potential flow equations replicate the bubble shape and angle of the cusp, which appear independent of the gas flux. We also find that there is a minimum gas flux for which these standing bubbles develop. As the gas flux decreases below this threshold, the standing bubbles become unstable and, instead, a much shorter oscillating bubble develops. This produces a wake which has similarities with that formed downstream of a cylinder in a confined channel, but which also carries bubbles downstream. We also find that with sufficiently small gas flux, no bubble develops. For liquid flow rates smaller than the critical value, Frd < 0.38, we find that the bubbles become unstable and detach from the injection point and rise up the tube.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference18 articles.

1. Rising bubbles in a two-dimensional tube with surface tension

2. Flow behaviour and heat transfer around the circular cylinder at high blockage ratios;Hiwada;Heat Transfer Japan Res.,1981

3. Strömung an einer Luftblase im senkrechten Rohr

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3